import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds tf.enable_v2_behavior() from tensorflow.python.framework.ops import disable_eager_execution disable_eager_execution() (ds_train, ds_test), ds_info = tfds.load( 'mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, ) def normalize_img(image, label): """Normalizes images: `uint8` -> `float32`.""" return tf.cast(image, tf.float32) / 255., label batch_size = 128 ds_train = ds_train.map( normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) ds_train = ds_train.batch(batch_size) ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) ds_test = ds_test.map( normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_test = ds_test.batch(batch_size) ds_test = ds_test.cache() ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu'), tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), # tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), # tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile( loss='sparse_categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(0.001), metrics=['accuracy'], ) model.fit( ds_train, epochs=12, validation_data=ds_test, )